博客
关于我
基于图像的场景三维建模
阅读量:485 次
发布时间:2019-03-06

本文共 618 字,大约阅读时间需要 2 分钟。

图像三维建模系统与其核心算法探析

三月已过半旬,春暖花开的季节愈加明媚,也标志着科研领域的工作进入白热化阶段。新一届学子即将离校,各位科研者则要在工作中迎接新的挑战。本平台为各位科研者祝愿,愿您在新的一年里事事顺心,工作顺利开展。

话题回归,今天我们聚焦于图像三维建模系统。其核心框架如图所示,主要包含多个关键算法模块。值得注意的是,深度学习技术在该领域发挥着重要作用。

核心算法解析

图像三维建模系统的核心算法主要包括以下几种:

  • 融合辅助信息的全局式稀疏重建:该算法通过整合多源数据,提升重建精度。
  • 混合式稀疏重建:结合传统方法与深度学习模型,优化重建效率。
  • 多相机系统稀疏重建:针对多摄像头数据,提出创新解决方案。
  • 邻域图像组最优选择:通过图像匹配技术,提升重建鲁棒性。
  • 基于深度图融合的稠密重建:将深度信息与图像数据有效结合。
  • 此外,还有天地点云融合点云语义分类等算法,进一步提升系统性能。

    应用场景

    该系统已经在多个领域展现出显著成效:

  • 中国古代建筑三维数字化保护:例如悬空寺的数字化复原,为文化遗产保护提供了重要技术支持。
  • 三维数字化城市:为城市规划与管理提供精准数据。
  • 无人机三维地图构建:支持无人机在复杂环境下的应用。
  • 室内外三维重建:实现室内外空间的精准测绘。
  • 本文内容基于中国科学院自动化研究所模式识别国家重点实验室的研究成果。如果您对相关领域感兴趣,可以前往http://vision.ia.ac.cn进一步探索。

    转载地址:http://ydxdz.baihongyu.com/

    你可能感兴趣的文章
    node中fs模块之文件操作
    查看>>
    Node中同步与异步的方式读取文件
    查看>>
    node中的get请求和post请求的不同操作【node学习第五篇】
    查看>>
    Node中的Http模块和Url模块的使用
    查看>>
    Node中自启动工具supervisor的使用
    查看>>
    Node入门之创建第一个HelloNode
    查看>>
    node全局对象 文件系统
    查看>>
    Node出错导致运行崩溃的解决方案
    查看>>
    Node响应中文时解决乱码问题
    查看>>
    node基础(二)_模块以及处理乱码问题
    查看>>
    node安装卸载linux,Linux运维知识之linux 卸载安装node npm
    查看>>
    node安装及配置之windows版
    查看>>
    Node实现小爬虫
    查看>>
    Node提示:error code Z_BUF_ERROR,error error -5,error zlib:unexpected end of file
    查看>>
    Node提示:npm does not support Node.js v12.16.3
    查看>>
    Node搭建静态资源服务器时后缀名与响应头映射关系的Json文件
    查看>>
    Node服务在断开SSH后停止运行解决方案(创建守护进程)
    查看>>
    node模块化
    查看>>
    node模块的本质
    查看>>
    node环境下使用import引入外部文件出错
    查看>>