博客
关于我
基于图像的场景三维建模
阅读量:485 次
发布时间:2019-03-06

本文共 618 字,大约阅读时间需要 2 分钟。

图像三维建模系统与其核心算法探析

三月已过半旬,春暖花开的季节愈加明媚,也标志着科研领域的工作进入白热化阶段。新一届学子即将离校,各位科研者则要在工作中迎接新的挑战。本平台为各位科研者祝愿,愿您在新的一年里事事顺心,工作顺利开展。

话题回归,今天我们聚焦于图像三维建模系统。其核心框架如图所示,主要包含多个关键算法模块。值得注意的是,深度学习技术在该领域发挥着重要作用。

核心算法解析

图像三维建模系统的核心算法主要包括以下几种:

  • 融合辅助信息的全局式稀疏重建:该算法通过整合多源数据,提升重建精度。
  • 混合式稀疏重建:结合传统方法与深度学习模型,优化重建效率。
  • 多相机系统稀疏重建:针对多摄像头数据,提出创新解决方案。
  • 邻域图像组最优选择:通过图像匹配技术,提升重建鲁棒性。
  • 基于深度图融合的稠密重建:将深度信息与图像数据有效结合。
  • 此外,还有天地点云融合点云语义分类等算法,进一步提升系统性能。

    应用场景

    该系统已经在多个领域展现出显著成效:

  • 中国古代建筑三维数字化保护:例如悬空寺的数字化复原,为文化遗产保护提供了重要技术支持。
  • 三维数字化城市:为城市规划与管理提供精准数据。
  • 无人机三维地图构建:支持无人机在复杂环境下的应用。
  • 室内外三维重建:实现室内外空间的精准测绘。
  • 本文内容基于中国科学院自动化研究所模式识别国家重点实验室的研究成果。如果您对相关领域感兴趣,可以前往http://vision.ia.ac.cn进一步探索。

    转载地址:http://ydxdz.baihongyu.com/

    你可能感兴趣的文章
    NutUI:京东风格的轻量级 Vue 组件库
    查看>>
    NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
    查看>>
    NutzWk 5.1.5 发布,Java 微服务分布式开发框架
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    Nuxt Time 使用指南
    查看>>
    NuxtJS 接口转发详解:Nitro 的用法与注意事项
    查看>>
    NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
    查看>>
    NVelocity标签使用详解
    查看>>
    NVelocity标签设置缓存的解决方案
    查看>>
    Nvidia Cudatoolkit 与 Conda Cudatoolkit
    查看>>
    NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
    查看>>
    nvidia 各种卡
    查看>>
    NVIDIA-cuda-cudnn下载地址
    查看>>
    nvidia-htop 使用教程
    查看>>
    nvidia-smi 参数详解
    查看>>
    Nvidia驱动失效,采用官方的方法重装更快
    查看>>
    nvmw安装node-v4.0.0之后版本的临时解决办法
    查看>>
    nvm切换node版本
    查看>>
    nvm安装 出现 Error retrieving “http://xxxx/SHASUMS256.txt“: HTTP Status 404 解决方法
    查看>>
    nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
    查看>>